A self-learning and tuning fuzzy logic controller based on genetic algorithms and reinforcements

نویسندگان

  • Hung-Yuan Chung
  • Chih-Kuan Chiang
چکیده

This article presents a new method for learning and tuning a fuzzy logic controller automatically. A reinforcement learning and a genetic algorithm are used in conjunction with a multilayer neural network model of a fuzzy logic controller, which can automatically generate the fuzzy control rules and refine the membership functions at the same time to optimize the final system’s performance. In particular, the self-learning and tuning fuzzy logic controller based on genetic algorithms and reinforcement learning architecture, which is called a Stretched Genetic Reinforcement Fuzzy Logic Controller (SGRFLC), proposed here, can also learn fuzzy logic control rules even when only weak information, such as a binary target of ‘‘success’’ or ‘‘failure’’ signal, is available. We extend the AHC algorithm of Barto, Sutton, and Anderson to include the prior control knowledge of human operators. It is shown that the system can solve a fairly difficult control learning problem more concretely, the task is a cart–pole balancing system, in which a pole is hinged to a movable cart to which a continuously variable control force is applied.  1997 John Wiley & Sons, Inc.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal intelligent control for glucose regulation

This paper introduces a novel control methodology based on fuzzy controller for a glucose-insulin regulatory system of type I diabetes patient. First, in order to incorporate knowledge about patient treatment, a fuzzy logic controller is employed for regulating the gains of the basis Proportional-Integral (PI) as a self-tuning controller. Then, to overcome the key drawback of fuzzy logic contro...

متن کامل

Performance Improvement of Direct Torque Controlled Interior Permanent Magnet Synchronous Motor Drives Using Artificial Intelligence

The main theme of this paper is to present novel controller, which is a genetic based fuzzy Logic controller, for interior permanent magnet synchronous motor drives with direct torque control. A radial basis function network has been used for online tuning of the genetic based fuzzy logic controller. Initially different operating conditions are obtained based on motor dynamics incorporating...

متن کامل

Fuzzy logic controlled differential evolution to solve economic load dispatch problems

In recent years, soft computing methods have generated a large research interest. The synthesis of the fuzzy logic and the evolutionary algorithms is one of these methods. A particular evolutionary algorithm (EA) is differential evolution (DE). As for any EA, DE algorithm also requires parameters tuning to achieve desirable performance. In this paper tuning the perturbation factor vector of DE ...

متن کامل

Fuzzy logic controlled differential evolution to solve economic load dispatch problems

In recent years, soft computing methods have generated a large research interest. The synthesis of the fuzzy logic and the evolutionary algorithms is one of these methods. A particular evolutionary algorithm (EA) is differential evolution (DE). As for any EA, DE algorithm also requires parameters tuning to achieve desirable performance. In this paper tuning the perturbation factor vector of DE ...

متن کامل

Tuning of a neuro-fuzzy controller by genetic algorithm

Due to their powerful optimization property, genetic algorithms (GAs) are currently being investigated for the development of adaptive or self-tuning fuzzy logic control systems. This paper presents a neuro-fuzzy logic controller (NFLC) where all of its parameters can be tuned simultaneously by GA. The structure of the controller is based on the radial basis function neural network (RBF) with G...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Int. J. Intell. Syst.

دوره 12  شماره 

صفحات  -

تاریخ انتشار 1997